Lecture 2: Dynamic Optimality I

1 Plan

- BST Model + Instance Optimality
- Splay Trees
- Geometric View of Dynamic Optimality Conjecture
- Greedy BST (via Treaps)

2 Last Time

2.1 Predecessor Search

Maintain $S \subseteq[n]$ s.t. under predecessor search queries:

$$
\operatorname{Pred}(x):=\max \{y \in S \mid y \leq x\}
$$

For example, $\operatorname{Pred}(57)$ when $S=\{9,17,23,50,76,79\}$ returns 50 . We let AS be the sequences of searches such that $A S=\left\{x_{1} \ldots x_{n}\right\}$. NB: We generally assume AS to be longer than n.

2.2 Self-Balancing BSTs

- Examples: RBTs, AVLs, Rand BSTs
- Local rotations: $t_{n}=t_{q}=\Theta(\log n)$ op. (am (amortized)/wc (worst-case))

Can we do better? Depends on $A S$. For example, take the sequential / monotone $A S:=\{1,2,3 \ldots n\}$. We can get $O(1)$ access time/update time if we rotate after each access:

Need instance specific benchmarks!

3 BST Model

3.1 Overview

BST Model \leq Pointer Machine (PM)

- Keys are stored as nodes of a BST
- Allowed ops starting at route:
(i) Walk up/left/right
(ii) Local rotation:

- No RAM in BST-Model! Reduces to PM-Model.

Remarks:

- BST Model is weak.
- \exists a single access sequence $A S$ simultaneously hard $\Omega(n \log n)$ for all BSTs!
- We focus only on searches. For now, rotations are used to speed up search time.

3.2 Properties

(I) Sequence Access Property: Monotone $A S:=\{1 \ldots n\} O(1) /$ op (am).
(II) Dynamic Finger Property: (Spatial Locality)

$$
\left|x_{i}-x_{i-1}\right| \leq k \Longrightarrow O(\log k) / \text { op }
$$

time

Ex. Finger Trees (level-linked trees):

Does BST have this property? $\approx(50 \mathrm{p}$. SICOMP [Cole 2000] $)$
(III) Working-Set/Move-To-Front (MTF Property): (Temporal Locality)

If t_{i} distinct keys accessed since last $S\left(x_{i}\right) \Longrightarrow O\left(\log t_{i}\right) /$ op

(IV) Entropy Property:

$$
\text { Frequency of } x_{i}:=p_{i} \Longrightarrow O\left(\sum_{i} p_{i} \log \frac{1}{p_{i}}\right) / \text { op (am) }
$$

Static optimality: $\Theta\left(\sum_{i} p_{i} \log \frac{1}{p_{i}}\right)$ opt if we disallow rotations. Essentially Huffman compression trees. Final Project (FP): Tree Compression vs Dynamic BST [Godin 2019]
(V) Unified Property:

$$
t_{i j} \text { distinct key accesses before } x_{i} \Longrightarrow \operatorname{cost}\left(x_{i}\right) \leq O\left(\log \left(\min _{j \leq i}\left\{\left|x_{i}-x_{j}\right|+t_{i j}\right\}\right)+2\right)
$$

For example consider if we accessed 13 in the past. Now if we've never seen 15 we want it so that a recent access of 13 would shorten the search time for 15 . Hence the L1 ball (bounded by the sum of the components).
Open Question: \exists BST satisfying unified property?
Relationships

1. $(\mathrm{II}) \Longrightarrow(\mathrm{I})$: this follows from the fact that $(\mathrm{I}) \mathrm{s}$ the special case where $k=1$.
2. (III) \Longrightarrow (IV) : intuitively consider the two sequences 111111222222 vs 111211221222 same frequencies but clearly (IV) would capture the correlation in the former.

Dynamic Optimality Conjecture [ST' 85]:

\exists a single dynamic BST \mathcal{T} s.t. $\forall x(\mathrm{AS}): C_{\mathcal{T}}(x) \leq O\left(C_{B S T}(x)\right)$
\Longrightarrow Best online solution $=$ Best offline solution
where $C_{B S T}(x)$ is the optimal tree over all possible trees on that x.
Essentially posing that in the case of a resource limited BST model, being able to predict the future doesn't help you.

4 Splay Trees [ST '81]

4.1 Premise

- We consider the restriction of BST and no updates on the task of search.
- Splay Trees are conjectured to be Dynamically Optimal (Open)
- Motivated by the Huffman Tree, which is optimal for the static case, we want a dynamic tree which will keep recent keys close to the root.

4.2 Algorithm

- Upon searching for a key, we propogate it to the root of the tree using one of 4 splaying rotations. Since rr and $1 l$ are similar and rl and lr are similar we just present one of each pair.
- Double Rotations ("splaying"):
- rr-splay (Zig-Zig rotation)

- lr-splay (Zig-Zag Rotation)

- We don't aim to maintain a balanced tree but rather a tree that adapts to recent events thereby increasing temporal locality.
- Concerning spacial locality, note that suppose w isn't in the search path of x but they the subpath share ℓ. Then $d w$ doesn't change that much:

$$
d_{w}^{\prime} \leq d_{w}+\ell / 2+O(1)
$$

. Effectively, it halves the 'shared' depth each time a spatially local query is made.

4.3 Theorem MTF property of Splay Trees

Theorem 1. Splay trees have amortized search/insert/delete time of $O(\log n) / o p$ (insert/delete left as an exercise).

Proof. Via potential argument. Let \mathcal{T}_{i} be the $i^{\text {th }}$ tree (ie the tree after the $i^{\text {th }}$ search). For potential argument, we choose a w such that $w(x)>0$ and in particular for this theorem take $w(x)=1$.

Define:

$$
S_{i}(s)=\sum_{y \in \mathcal{T}_{i}(x)} w(y)
$$

and Rank:

$$
r_{i}(x)=\log \left(S_{i}(x)\right)
$$

Define the potential Φ to be:

$$
\Phi(i):=\Phi\left(\mathcal{T}_{i}\right)=\sum_{x \in \mathcal{T}_{i}} r_{i}(x)
$$

Effectively it represents the average depth over nodes in \mathcal{T}_{i}.
Lemma 2 (Access Lemma). The amortized $\operatorname{Cost}(\Phi)$ of the $i^{\text {th }}$ splay operation on x is $\leq 3\left(r_{i}(x)-r_{i-1}(x)\right)$
Proof of Access Lemma (rr-splay):

$$
\operatorname{Cost}_{x}(i)=2+\Delta_{i} \Phi
$$

as we are considering the amortized cost of operation on the node x on the $i^{\text {th }}$ operation which consists of two rotations in addition to the change in Φ induced by i. Recall the rr-splay we do out the analysis for rr but not that rl (by extension also lr and ll) are similar:

To compute $\Delta_{x}(i)$, we note that the subtrees internally are unchanged by the splay operation, so we only need to worry about the x, y, z. We use the following inequalities:

$$
\begin{aligned}
\text { (I) } r_{i+1}(x) & =r_{i}(z) \\
\text { (II) } r_{i}(x) & \leq r_{i}(y) \\
\text { (III) } r_{i+1}(y) & \leq r_{i+1}(x)
\end{aligned}
$$

By inspection, we see that (I) holds since the entire tree remains in the subtree of the rotation root. Next note (II) holds because y is a parent of x, while (III) holds since x is a parent of y after the rotation.

Going back to our expression of cost:

$$
\begin{array}{rl}
{\hat{C o s s t_{x}}(i)}^{\hat{S}^{2}} & 2+\Delta_{i} \Phi \\
& =2+r_{i+1}(x)+r_{i+1}(y)+r_{i+1}(z)-r_{i}(x)-r_{i}(y)-r_{i}(z) \\
& \leq_{(\mathbf{I})} 2+r_{i+1}(x)+r_{i+1}(y)+r_{i+1}(z)-r_{i}(x)-r_{i}(y)-r_{i+1}(x) \\
& =2+r_{i+1}(y)+r_{i+1}(z)-r_{i}(x)-r_{i}(y) \\
& \leq(\mathbf{I I}) 2+r_{i+1}(y)+r_{i+1}(z)-2 r_{i}(x)
\end{array}
$$

Aside:

$$
\begin{aligned}
\frac{r_{i}(x)+r_{i+1}(z)}{2} & =\frac{\log \left(S_{i}(x)\right)+\log \left(S_{i+1}(z)\right)}{2} & & \\
& \leq \frac{\log \left(S_{i}(x)+S_{i+1}(z)\right)}{2} & & \text { via log concavity } \\
& \leq \frac{\log \left(S_{i+1}(x)\right)}{2} & & \text { A and B are disjoint from C and D } \\
& \leq r_{i+1}(x)-1 & &
\end{aligned}
$$

rearranging:

$$
r_{i+1}(z) \leq 2 r_{i+1}(x)-r_{i}(x)-2
$$

Applying this to the cost function:

$$
\begin{aligned}
\hat{\text { Cost }}_{x}(i) & \leq 2+r_{i+1}(y)+r_{i+1}(z)-2 r_{i}(x) \\
& \leq 2+r_{i+1}(y)+\left(2 r_{i+1}(x)-r_{i}(x)-2\right)-2 r_{i}(x) \\
& =r_{i+1}(y)+2 r_{i+1}(x)-3 r_{i}(x) \\
& \leq(\text { III }) 3\left(r_{i+1}(x)-r_{i+1}(x)\right) \\
& =3\left(r_{i+1}(x)-r_{i+1}(x)\right)
\end{aligned}
$$

As we have proven the lemma as we set out to.
Now to prove the Theorem:

$$
\begin{aligned}
\hat{\operatorname{Cost}(x)} & =\sum_{i=1}^{k} \hat{\operatorname{Cost}}_{i}(x) \\
& \leq{ }_{A L} 3 \sum_{i=1}^{k} r_{i}(x)-r_{i-1}(x) \\
& =3\left(r_{k}-r_{1}\right) \\
& \leq 3(\log n-0) \\
& =O(\log n)
\end{aligned}
$$

