
COMS E6998: Advanced Data Structures (Spring’19) Jan 31, 2019

Lecture 2: Dynamic Optimality I

Instructor: Omri Weinstein Scribes: Weston Jackson and Justin Wong

1 Plan

• BST Model + Instance Optimality

• Splay Trees

• Geometric View of Dynamic Optimality Conjecture

• Greedy BST (via Treaps)

2 Last Time

2.1 Predecessor Search

Maintain S ⊆ [n] s.t. under predecessor search queries:

Pred(x) := max{y ∈ S|y ≤ x}

For example, Pred(57) when S = {9, 17, 23, 50, 76, 79} returns 50. We let AS be the sequences of searches

such that AS = {x1...xn}. NB: We generally assume AS to be longer than n.

2.2 Self-Balancing BSTs

• Examples: RBTs, AVLs, Rand BSTs

• Local rotations: tn = tq = Θ(log n) op. (am (amortized)/wc (worst-case))

Can we do better? Depends on AS. For example, take the sequential / monotone AS := {1, 2, 3...n}.
We can get O(1) access time/update time if we rotate after each access:

1

2

...

n

2

1 ...

n

1

Need instance specific benchmarks!

3 BST Model

3.1 Overview

BST Model ≤ Pointer Machine (PM)

• Keys are stored as nodes of a BST

• Allowed ops starting at route:

(i) Walk up/left/right

(ii) Local rotation:

x

y

A B

C

→ y

A x

B C

• No RAM in BST-Model! Reduces to PM-Model.

Remarks:

• BST Model is weak.

• ∃ a single access sequence AS simultaneously hard Ω(n log n) for all BSTs!

• We focus only on searches. For now, rotations are used to speed up search time.

3.2 Properties

(I) Sequence Access Property: Monotone AS := {1...n} O(1) / op (am).

(II) Dynamic Finger Property: (Spatial Locality)

|xi − xi−1| ≤ k =⇒ O(log k) / op

2

Ex. Finger Trees (level-linked trees):

Does BST have this property? ≈ (50 p. SICOMP [Cole 2000])

(III) Working-Set/Move-To-Front (MTF Property): (Temporal Locality)

If ti distinct keys accessed since last S(xi) =⇒ O(log ti) / op

(IV) Entropy Property:

Frequency of xi := pi =⇒ O(
∑
i

pi log
1

pi
) / op (am)

Static optimality: Θ(
∑

i pi log 1
pi

) opt if we disallow rotations. Essentially Huffman compression trees.

Final Project (FP): Tree Compression vs Dynamic BST [Godin 2019]

(V) Unified Property:

tij distinct key accesses before xi =⇒ cost(xi) ≤ O(log(minj≤i{|xi − xj |+ tij}) + 2)

3

For example consider if we accessed 13 in the past. Now if we’ve never seen 15 we want it so that a

recent access of 13 would shorten the search time for 15. Hence the L1 ball (bounded by the sum of the

components).

Open Question: ∃ BST satisfying unified property?

Relationships

1. (II) =⇒ (I) : this follows from the fact that (I) s the special case where k = 1.

2. (III) =⇒ (IV) : intuitively consider the two sequences 111111222222 vs 111211221222 same

frequencies but clearly (IV) would capture the correlation in the former.

Dynamic Optimality Conjecture [ST’ 85]:

∃ a single dynamic BST T s.t. ∀x (AS) : CT (x) ≤ O(CBST (x))

=⇒ Best online solution = Best offline solution

where CBST (x) is the optimal tree over all possible trees on that x.

Essentially posing that in the case of a resource limited BST model, being able to predict the future

doesn’t help you.

4 Splay Trees [ST ’81]

4.1 Premise

• We consider the restriction of BST and no updates on the task of search.

• Splay Trees are conjectured to be Dynamically Optimal (Open)

• Motivated by the Huffman Tree, which is optimal for the static case, we want a dynamic tree which

will keep recent keys close to the root.

4

4.2 Algorithm

• Upon searching for a key, we propogate it to the root of the tree using one of 4 splaying rotations.

Since rr and ll are similar and rl and lr are similar we just present one of each pair.

• Double Rotations (”splaying”):

– rr-splay (Zig-Zig rotation)

Z

Y

X

A B

C

D

−−→
r(y)

Y

X

A B

Z

C D

−−→
r(x)

X

A Y

B Z

C D

– lr-splay (Zig-Zag Rotation)

Z

Y

A X

B C

D

−−→
r(x)

Z

X

Y

A B

C

D

−−→
r(x)

X

Y

A B

Z

C D

• We don’t aim to maintain a balanced tree but rather a tree that adapts to recent events thereby

increasing temporal locality.

• Concerning spacial locality, note that suppose w isn’t in the search path of x but they the subpath

share `. Then dw doesn’t change that much:

d′w ≤ dw + `/2 + O(1)

. Effectively, it halves the ’shared’ depth each time a spatially local query is made.

4.3 Theorem MTF property of Splay Trees

Theorem 1. Splay trees have amortized search/insert/delete time of O(log n)/op (insert/delete left as

an exercise).

Proof. Via potential argument. Let Ti be the ith tree (ie the tree after the ith search). For potential

argument, we choose a w such that w(x) > 0 and in particular for this theorem take w(x) = 1.

5

Define:

Si(s) =
∑

y∈Ti(x)

w(y)

and Rank:

ri(x) = log(Si(x))

Define the potential Φ to be:

Φ(i) := Φ(Ti) =
∑
x∈Ti

ri(x)

Effectively it represents the average depth over nodes in Ti.

Lemma 2 (Access Lemma). The amortized Cost(Φ) of the ith splay operation on x is ≤ 3(ri(x)−ri−1(x))

Proof of Access Lemma (rr-splay):

ˆCostx(i) = 2 + ∆iΦ

as we are considering the amortized cost of operation on the node x on the ith operation which consists

of two rotations in addition to the change in Φ induced by i. Recall the rr-splay we do out the analysis

for rr but not that rl (by extension also lr and ll) are similar:

Z

Y

X

A B

C

D

−−−−−→
rr−splay

X

A Y

B Z

C D

To compute ∆x(i), we note that the subtrees internally are unchanged by the splay operation, so we

only need to worry about the x, y, z. We use the following inequalities:

(I) ri+1(x) = ri(z)

(II) ri(x) ≤ ri(y)

(III) ri+1(y) ≤ ri+1(x)

By inspection, we see that (I) holds since the entire tree remains in the subtree of the rotation root.

Next note (II) holds because y is a parent of x, while (III) holds since x is a parent of y after the rotation.

6

Going back to our expression of cost:

ˆCostx(i) = 2 + ∆iΦ

= 2 + ri+1(x) + ri+1(y) + ri+1(z)− ri(x)− ri(y)− ri(z)

≤(I) 2 + ri+1(x) + ri+1(y) + ri+1(z)− ri(x)− ri(y)− ri+1(x)

= 2 + ri+1(y) + ri+1(z)− ri(x)− ri(y)

≤(II) 2 + ri+1(y) + ri+1(z)− 2ri(x)

Aside:

ri(x) + ri+1(z)

2
=

log(Si(x)) + log(Si+1(z))

2

≤ log(Si(x) + Si+1(z))

2
via log concavity

≤ log(Si+1(x))

2
A and B are disjoint from C and D

≤ ri+1(x)− 1

rearranging:

ri+1(z) ≤ 2ri+1(x)− ri(x)− 2

Applying this to the cost function:

ˆCostx(i) ≤ 2 + ri+1(y) + ri+1(z)− 2ri(x)

≤ 2 + ri+1(y) + (2ri+1(x)− ri(x)− 2)− 2ri(x)

= ri+1(y) + 2ri+1(x)− 3ri(x)

≤(III) 3(ri+1(x)− ri+1(x))

= 3(ri+1(x)− ri+1(x))

As we have proven the lemma as we set out to.

Now to prove the Theorem:

ˆCost(x) =

k∑
i=1

ˆCosti(x)

≤AL 3

k∑
i=1

ri(x)− ri−1(x)

= 3(rk − r1)

≤ 3(log n− 0)

= O(log n)

7

